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On the Fitting Length of Hn(G).

GÜLIN ERCAN - ISMAIL 015E. GÜLO011FLU(*)

For a finite group G and n e N the generalized Hughes subgroup
Hn (G ) of G is defined as Hn (G ) _ (x E G11;z! Recently, there has
been some research in the direction of finding a bound for the Fitting
length of Hn (G ) in a solvable group G with a proper generalized Hugh-
es subgroup in terms of n. In this paper we want to present a proof for
the following

THEOREM 1. Let G be a finite solvable group, Pl, P2, ..., pm pair-
wise distinct primes and n = p1 ’ p2 ’ · · · ’ pm · If Hn (G ) ~ G, then the Fit-
ting length of Hn (G) is at most m + 3.

This result is an immediate consequence of

THEOREM 2. Let G be a finite solvable group, H a proper, normal
subgroup of G such that the order of every element of G B H divides n =
= p1 ’ p2 ’ ... ’ Pm’ where pl, P2, ..., pm are pairwise distinct primes. Then
the Fitting length f(H) of H is at most m + 3.

The proof of Theorem 2 will be given as usual by showing that a
counterexample to the theorem does not exist. If G is a minimal coun-
terexample to the theorem, then clearly is a prime,
G for some element « E G B H of order p and every element of
G B H has order dividing n = p ’ ql ’ q2 ’ ... ’ qm -1 I for pairwise distinct

primes p, q1, q2 ..., Qm-1.
Therefore Theorem 2 is a corollary of the following result

THEOREM 3. Let H be a finite solvable group, a an automorphism
of H of prime order p and let G = H(a) be the natural semidirect

(*) Indirizzo degli AA.: Middle East Technical University, Department of
Mathematics, 06531 Ankara, Turkey.
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product of H with (a). Suppose that a acts on H in such a way that the
order of any element of G ~ H divides N = p. q1 . q2..... qm where
q1, ..., qm are (not necessarily distinct) primes different from p. N,
then the Fitting length of H is at most m + 4. Furthermore, if
H = [H, a], then the Fitting length of H is at most m + 2.

Unfortunately, we were not able to see whether the bound given in
the above theorem is the best possible bound although one can con-
struct an example to show that the best bound in the case H = [H, a]
must be greater than or equal to m + 1.

For the proof of the theorem, we need a technical lemma, which is
essentially well known.

LEMMA 1. Let the cyclic group Z of prime order p act on the finite
solvable group 1 ;z! H in such a way that the orders of elements of the
natural semidirect product G = HZ lying outside H are not divisible
by p 2 . If f = f(H) is the Fitting length of H, then there exist subgroups
Ci, C2, ..., Cf of H and subgroups Di a Cü i = 1, 2, ..., f and an element
x,E G ~ H of order p such that the following conditions are satis-

fied:
(i) Ci is a pi-subgroup for some prime pi , i = 1, 2, ..., f and 

;z! Pi+1 for i=1,2,...,f-1.
(ii) Ci and Di are Ci + 1 ... C¡(x)-invariant for any

i=1,2,...,f.
(ill) Ci = Ci /Di is a special group on the Frattini factor group of

which acts irreducibly for any i = 1, 2, ..., f Ci + 1
acts trivially on i = 1, 2, ... , f.

(iv) [Ci, CZ + 1 ] = Ci for i = 1, 2 , ... , f - 1. The same equation
holds also for i = f, if (H), x ~~~ ] ~ 1 for any s E N; otherwise
[Cf, x]  D f and is of prime order. (The notation [G, a

group G and an element x is defined inductively as [G, X(8)] =
= [[G, x ~~-1 ~], x] for any s E N).

is contained in Ø(Ci+1 mod Di + 1 ),

(vi) For any i = 2, ... , f and any 1 ~ j  i, [Cj, Ci ] is not con-
tained in 

PROOF. A slight modification of Lemma 2.7 in [3] gives that H has
nilpotent subgroups Hl , ... , Hf and that there eyists x E G B H of order
p such that Hi is Hi + 1... H f ~x~-invariant, Fi (H) = Fi - 1 (H) Hi and Hi is
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a ni-group, where for any i = 1, 2, ... , f. Ob-
serve that for any prime q and any i = 1, 2, ... , f a Sylow q-subgroup of
Hi is 
_ 

If ( H ), x ~g~ ] = 1 for some s E N, then there exists a subgroup
Y of ( H ) of prime order which is centralized by x. Let p f = I Y 1.
If 1 for all S E N, then the same result holds for
some Sylow subgroup of Let p f be the corresponding
prime. _By a Hall-Higman reduction, there exists an (x)-invariant sub-
group Y of (H)) of minimal order on which (x~ acts nontriv-
ially. In this case p¡;z! ~, [Y, _x] _ _Y, Y is a special group, [ ~ (Y), x] = 1
and (x) acts irreducibly on 

In both cases, there exists an ~x~-invariant subgroup Cf of Opf(Hf)
of minimal order such that CfFf_1 (H)/Ff_1 (H) = Y. Let Cf fl
n (H) = D f. Suppose now, we have already chosen Ci + 1, Ci + 2, ... , Cf
such that Cj is a pj-subgroup of contained in Hj such that C~ is
Cj+1 ... Cfx&#x3E;-invariant for any j = i + 1, ..., f Cj/Dj = Cj is a non-
trivial special group on the Frattini factor group of which 
acts irreducibly for any j = i + 1, ... , f, where Dj = C~ n F~ _ 1 ( H ), C+ i
acts trivially and [Cj, C~ + 1 ] = C~ for j = i + 1, ... , f - 1.

acts faithfully on the Frattini factor group of
So there exists a such that 

acts nontrivially on °Pi (Fi (H)/Fi-1 (H)) and hence on Opt (Hi/Hi n
n Fi _ 1 ( H )). Let now Ci be subgroup of

of minimal order such that Ci + 1 acts nontrivially on

but trivially on any Ci+lCi+2 ... Cf(x)-invariant
subgroup of it. Then [Ci, = Ci and Ci /Di is a special group on the
Frattini factor group of which Ci + 1... Cf(x) acts irreducibly and the
Frattini subgroup of which is centralized by where Di = Ci n

Clearly, and Cci+1 (Ci ) is contained in
as 1 ~ is irreducible. So, recur-

sively Ci’s can be constructed such that (i)-(v) are satisfied.
If [Cj, for some i, j with 2 ~ i ~ f and 1 ~ j ~ i,

then three subgroup lemma yields that [C~ + 1, Ci, 
i.e. Repeating this argument, one gets
[Ci, for any j ~ k  i and hence Ci _ 1 = [Ci, 

which is not the case. This completes the proof.

PROOF OF THEOREM 3. Let f = f(H). By lemma, there exist sub-
groups Cl , ... , Cf of H and subgroups for i = 1, ... , f and an ele-
ment of order p satisfying (i)-(vi). Put K = Cl ... Cf. Now
K~x~ satisfies the hypothesis of the theorem. Note that if [H, «] = H,
then we have [Cf, x] = Cf and so we may assume that [K, x] = K.
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Suppose that there exist k and 1 with k  1 so that Ck
and Cl are both p-groups. Put L = · Obviously, f(L) = 3. By
lemma, there exist ~x~-invariant subgroups E1, E2, E3 of L and sub-
groups for i = 1, 2, 3 satisfying (i)-(vi), where El and E3 are p-
groups. is E2 E3 (x)-invariant and hence [E1, F3]

where also_ we have Thus F =
Put E = Observe that f(E) = 3

and [93, x] = 1. If [E2,_x] = 1, then [E1, x] = 1 whence [E, x] = 1. Then a
Sylow p-subgroup of E has exponent p and ([5], IX. 4.3) gives that p-
length of E is one which is not the case. Thus [E2, x] = E2 . As in the
proof of Proposition 1, the exceptional action of x on the elementary
abelian p-group E1 gives that_E2 is a nonabelian 2-group. Using ([2],
5.3.16), we get an element g E E3 (x)B E3 such_that y centralizes a non-
trivial element in the Frattini factor group of E2 on which E3 (x) acts ir-
reducibly. Thus y must centralize E2 . It follows that P2 is of exponent 2
and hence abelian. This contradiction shows that there is at most one p-
group among the Ci’s say Ck . Thus Ci is a p’-group and

i~k

f - By ([5], IX.4.3) q-length of is at most the multiplic-
ity of q in N for any prime q. Thus m and hence

f(U) ~ m + 2 by ([8], 3.2). It follows that + 4.

Furthermore, assume that [K, x] = K. Take C- for j &#x3E; k. Let V be
an irreducible composition factor of GF( p) [Cj, x] (x -submodule of the
Frattini factor group of Ck/Dk on which [Cj, x] acts nontrivially and let
C = ker ([Cj, x] (x) on ~. If x E C, then C fl x]  [cj, xi. So
C  [Cj, x]. Now applying ([7], 2.8) to x]/C on V, we get x]IC is
a nonabelian special group by ([4], 111.13.6) as x acts exceptionally on
V. The irreducibility of V and ([5], IX.3.2) yields that Cj is a 2-group.
Thus f = k + 1. If there exists s  k such that Cs is a 2-group, put M =
- [C8, Ck ] Ck Ck + 1. We have [M, x] = M and M is a ~2, p ~-group. It follows

k-1

that f (M)  2 by [1] which is not the case. Thus Y = n Ci is a {2,p}’-
i=1

group and so exp (CY (x)) divides a product of m - 1 primes. ([6], Satz 3)
implies that f([Y, x]) ~ m. If then [Ck-1, x] ,
~ Ck -1 = Dk -1 which is not the case. Consequently, f ( K ) _
=f(Y)+2=f([Y,x])+2~m+2.

REFERENCES

[1] G. ERCAN - I. 015E. GÜLO011FLU, On the Fitting length of generalized Hughes sub-
group, Arch. Math., 55 (1990), pp. 5-9.

[2] D. GORENSTEIN, Finite Groups, New York (1969).



175

[3] F. GROSS, Of finite groups of exponent pmqn, J. Algebra, 7 (1967), pp.
238-253.

[4] B. HUPPERT, Endliche Gruppen I, Berlin (1967).
[5] B. HUPPERT - N. BLACKBURN, Finite Groups II, Berlin - New York

(1982).
[6] H. KURZWEIL, p-Automorphismen von aufläsbaren p’- Gruppen, Math. Z.,

120 (1971), pp. 254-326.
[7] T. MEIXNER, The Fitting length of solvable Hpn-groups, Israel J. Math., 51

(1985), pp. 68-78.
[8] A. TURULL, Fitting height of groups and of fixed points, J. Algebra, 86

(1984), pp. 555-566.

Manoscritto pervenuto in redazione il 13 marzo 1992.


